A Rare Cause of Acute Myocardial Infarction: Coronary Artery Embolism

Selami DEMIRELLI1, Sakir ARSLAN2, Eftal Murat BAKIRCI3, Arif ARISOY1, Husnu DEGIRMENCI1

1 Atatürk University, Department of Cardiology, Erzurum, Turkey
2 Antalya Training and Research Hospital, Department of Cardiology, Antalya, Turkey
3 Bayburt State Hospital, Department of Cardiology, Bayburt, Turkey

ABSTRACT
A 49-year-old woman with a history of hypertension, diabetes mellitus and aortic valve replacement five years ago, admitted to our outpatient clinic with shortness of breath. Transesophageal echocardiography revealed a 5x2 mm thrombus on the anterior face of prosthetic aortic valve. A thrombolytic therapy (TT) was initiated but it was unsuccessful. In the tenth day of follow-up, she experienced chest pain with ST segment elevations through V2-V6 derivations on her ECG. With the diagnosis of acute myocardial infarction, the patient was taken into the catheterization laboratory.

In the coronary angiography, the mid segment of left anterior descending artery was completely occluded by a thrombus. Percutaneous transluminal coronary angioplasty was performed but it was failed. After then TT was started again. The second TT has become successful both in terms of coronary revascularization and resolution of valve thrombosis.

Key words: Coronary embolism, Aortic valve prosthesis, Myocardial infarction

CASE REPORT
A forty-nine years old, female patient admitted to our clinics due to ever increasing respiratory disorder started before 3 or 4 month ago. The patient was in NYHA functional class III. It was understood from her history revealed that she underwent operation of aortic valve replacement (St Jude valve, size 19 Mechanical Valve) five years ago and she has had both hypertension and diabetes mellitus for ten years. Blood pressure, pulse and fever was measured during her physical examination as 120/80 mmHg, 85 beat/min and 36.5 °C, respectively. In the course of auscultation, mechanical valve noise in the focus of aorta was heard. Other systemic examinations were inherent. Sinus rhythm was seen on electrocardiogram (ECG). In laboratory tests, hemoglobin, hematocrit, white blood cells, erythrocyte sedimentation rate and international
normalized ratio (INR) were 11 gr/dl, 34, 16200 mm3, 20/h and 2, respectively. The systolic functions of left ventricle (left ventricular ejection fraction (LVEF) was 65%) were assessed as normal on transthoracic echocardiography (TTE). However, aortic valve gradients were found as increased (peak/mean gradient was 83/50 mmHg). On transesophageal echocardiography (TEE), performed for better assessment of prosthesis valve during patient follow-up, a mobile, dimensions of 5x2 mm image matching with thrombosis was seen on anterior of the aortic face of prosthesis valve (Figure 1). Surgical operation was offered to the patient with the diagnosis of obstructive prosthetic aortic valve thrombosis, but the patient did not accept it. Then, thrombolytic treatment (TT) was applied to the reevaluated patient (100 mg rt-PA iv infusion was enforced in the course of 2 hours). On the TTE after 24 hours of TT, no significant changes were found on aortic valve gradients, and thrombosis was still continuing. Consequently, the TT was accepted as unsuccessful. On tenth day of her hospitalisation typical chest pain and ST segment elevation in V2-6 derivations had occurred. With diagnosis of myocardial infarction, the patient was immediately taken into the coronary angiography (CAG). On CAG, the mid segment of left anterior descending artery was completely occluded. Furthermore, a matching image with thrombosis existed in this part (Figure 2a). Other coronary arteries were observed as normal. Percutaneous balloon angioplasty was applied to this part. After the balloon angioplasty, it was monitored that thrombosis was still continuing (Figure 2b). Therefore, it was decided to give TT once again to the patient. For that purpose, the patient was taken into the coronary intensive care unit and applied TT (rt-PA was started with 15 mg bolus and then applied in accordance with 0.75 mg/kg in 30 minutes and 0.5 mg/kg in 60 minutes, as iv infusion). Afterwards, ST segment depressions on the electrocardiogram were more than %50, the patient’s angina was relief and the enzyme peak was occured and TT was accepted as successful. On TTE, decrease in aortic valve gradients (peak/mean gradient was 45/22 mmHg), LV wall movement disorder (apical hypokinesis) and slight decrease in the functions of LV (LVEF was 55%) were detected. Since the patient did not accepted the control TEE, the anticoagulant treatment was arranged that INR would be between 3.5 and 4.5 in addition to giving 100 mg aspirin and the patient was discharged. During two years of follow-up, no new coronary incident or valve problem came into existence.
DISCUSSION

Coronary artery embolism is rarely encountered and it arises frequently from cardiac valves (4). The most frequent reasons are septic emboli depend on infective endocarditic and prosthetic valve thrombosis emboli.

Prosthesis valve thrombosis is observed on the left side mechanical prosthesis valves in proportion between 0.5%- 8%. Valve malfunction and atrial fibrillation increase the risk of thromboembolism. In currently used bileaflet prosthesis valves, the risk of thromboembolism is similar with bioprostesis valvets-1.5%; patient/year (5). Coronary emboli restrain typically distal epicardial and intramural branches of left descending artery (6). Consisted acute occlusion leads to severe myocardial damage since these patients have not any chronic atherosclerosis.

Prosthetic valve obstruction could be treated medically or surgically. All treatment types have high risks. In 2006 ACC/AHA guideline; for treatment of left side mechanical prosthesis valves (MPV) thrombosis having big thrombosis burden, surgical treatment is offered as the first option (7). Thrombolytic treatment, however, is suggested to the patients having small thrombosis burden that their NYHA functional classes are I and II or to the patients having small thrombosis burden that their NYHA functional classes are III and IV, but surgically-high compromised or inappropriate for surgery. The success rate of thrombolytic treatment on left side MPV has been reported between 67% and 90%. As the functional class of our case was class III, it was initially offered surgical treatment to the patient. Yet, the patient did not accept it. Hereupon, it was started to thrombolytic treatment (TT). Surprisingly, coronary embolus has developed on the tenth day of unsuccessful TT. The reason could be that some parts of thrombosis depending on TT have broken to pieces due to dissolving in the course of time. On the other hand, percutaneous intervention for myocardial infarction developing as secondary to coronary embolus has become unsuccessful. On the contrary, TT has become successful. This ineffectiveness may result from that the only existing pathology is thrombosis instead of coronary lesion.

Applied TT because of developing coronary embolus in our patient has become successful both in terms of coronary revascularization and with regard to valve thrombosis. For this reason, trying the same treatment in the cases of unsuccessful TT on valve thrombosis may be considered one more time.

REFERENCES

