Yapay zeka insanlar tarafından yapıldığında zeka olarak adlandırılan akıllı davranışların cihazlar tarafından yapılmasıdır. Çoğunlukla insanın düşünme yeteneğini ve beynin çalışma özelliğini modellemeye çalışan yöntemlerden oluşur. Yapay zekanın amacı insanın zekasını bilgisayar aracılığı ile taklit etmek ve bu anlamda belli bir ölçüde bilgisayarlara öğrenme yeteneği kazandırabilmektir. Bilim adamları yıllardır yaptıkları çalışmalarla hayatımızı daha kolay hale getirmek için programlar geliştirmektedirler. Yapay zeka sistemleri bu programlara iyi bir örnektir
1.
Yapay zeka yöntemlerinin başlıcaları; uzman sistemler, bulanık mantık, yapay sinir ağları ve genetik algoritmalardan oluşur. Uzman sistemler kısaca bir kural tabanlı sistem olarak nitelendirilebilir. Burada kullanılan kurallar bir uzmanın görüşü veya deneyimine dayandırılarak oluşturulur. Oluşturulan bu kurallardan insanın neden-sonuç ilişkisine bağlı kalarak bir karara varması gibi mantıksal işlemlerle bir çıkarım yapılır. Bulanık mantık ise bir kural tabanlı sistem olarak düşünülebilir. Fakat burada nitelendirmeler, uzman sistemlerden farklı olarak, insanların günlük hayatta yaptığı nitelemelerin büyük çoğunluğu gibi kesin değildir. Bulanık mantık bu şekilde kural tabanının günlük hayatta kullanılan kesin olamayan hükümlerle oluşturulmasına imkan sağlar. Yapay sinir ağları adından da anlaşılacağı gibi beynin çok basit bir nöron modelinin benzetimidir. Beynin öğrenme kapasitesi nöronlar ve bunların birbiri ile olan bağlantısına bağlıdır. Bu şekilde elde edilen yapay ağ ile öğrenme olayı modellenir. Günümüzde yapay zeka kontrol, tasarım, biyomedikal ve tıp alanları başta olmak üzere araştırmacıların büyük ilgisini çekmektedir 2,3.
Yapay zeka tekniklerine ilişkin ilk görüşler günümüzden yıllarca önce, 1965 yılında ortaya atılmış, 1969 yılında bulanık küme teorisinin tıp alanında kullanılabilirliği açıklanması ile pek çok çalışmalar yapılmaya başlanmış, 1975 yılında kardiovasküler sistemlerin klinik uygulamalarda kullanılması önerilmiş, 1980'de kardiak fonksiyonlarının değerlendirilmesinde bulanık küme teorisinin kullanılmasında çalışmışlar yapılmış, 1989'da EKG verilerinin sınıflandırılması ve tanısı konusunda ilk çalışmalar yapılmış ve bu çalışmalarda elde edilen bilgiler, bulanık küme formuna getirilerek istatistiksel yaklaşımlarla sınıflandırılmıştır 4-7.
1990'lı yılların ortalarında kalp hastalıklarında bulanık küme ve hibrit sistemlerle tanısı ile ilgili çalışmalar yapılmış, 1994 yılında koroner arter hastalığının yapay sinirsel sistemle %89 doğruluk oranında sınıflandırılmış ve sonraki yıllarda da yapay zeka teknikleri ile çeşitli kalp hastalıklarında tanı koymada, büyük başarı kaydedilmiştir. 1996 yılında kalbin tomografik görüntüleri bulanık mantık ile %94 doğruluk oranında sınıflandırılmış, 1998 yılında koroner arter hastalıklarının bulanık mantıkla sınıflaması konusunda genetik bulanık kural tabanı kullanılarak %96 oranında başarı elde edilmiştir 8-15.
1999 yılında NEFCLASS sinirsel bulanık mantık sistemi ile akciğer kanseri bulgularlarının sınıflandırılmasında %95 oranında başarı sağlanmıştır 16.
2002 ve 2004 yıllarında bulanık mantık ve genetik tabanlı bulanık sınıflayıcı ile kardiak Doppler işaretlerinin sınıflandırılması başarılı bir şekilde gerçekleştirilmiştir 17,18.
2005 yılında yapılan bir çalışmada Doppler sonogramlarından elde edilen parametrelerle sinir ağı eğitilmiş ve orta serebral arter darlığının dereceleri tahmin edilmeye çalışılmış, sistemin performansı veri boyutuna ve eğitim için seçilen parametrelere son derece bağımlı olduğu saptanmıştır 19.
YAPAY ZEKA TEKNİKLERİ
1. Uzman Sistemler (Expert Systems)
Yapay zekanın en önemli uygulama alanlarından biri uzman sistemlerdir. Bu tip sistem belli bir alanda uzman olan kişilerin uzmanlıklarına dayanarak çözüm arar. Bunu bir tür bilgisayarda düzenlenmiş danışma sistemi olarak düşünebiliriz. Uzman sistemlerin oluşturulmasında, sırasıyla; tanımlama, kavramsallaştırma, formüle etme (yazılım), test etme ve değerlendirme aşamaları uygulanır. Tıp ve biyomedikal en başta gelen uygulama alanlarıdır 20,21.
Bir uzman sistem; kural tabanı, veri tabanı ve kural çözümleyici olmak üzere üç bölümden oluşur. Şekil 1'de, bir uzman sistemin şematik yapısı görülmektedir.
2. Bulanık Mantık (Fuzzy Logic)
Bulanık mantık programının dayandığı temel nokta; uzman bir sistem operatörünün bilgi, deneyim, sezgi ve kontrol sonuçlarını bilgi tabanı olarak oluşturmaktır. İşlemler bilgi ve deneyime dayanan kurallarla gerçekleştirilir. Bulanık mantıkta deneyimler etkin bir şekilde kullanılır. Bilgisayar tabanlı uygulamalarında kural tabanı, veri tabanı, bulandırıcı, çıkarım ve berraklaştırıcı yazılımlar kullanılarak işlem gerçekleştirilir. Şekil 2'de bir bulanık mantık programının şematik yapısı görülmektedir.
Bulanık mantık insan düşüncesinin esnek ve değişken yapısını dikkate alan bir algoritmadır. Bilgiler arasında sebep-sonuç ilişkisi kurarak doğru ve mantıksal bir sonuç üretir.Bu işlemin yapılabilmesi için ilk olarak verilerin belirlenmesi gerekmektedir. Bu veriler belirli sınırlar içerisinde gruplandırılarak bulanık kümeler haline getirilir, tüm olası durumlar dikkate alınarak kural tabanı oluşturulur. Bu kurallar bir kontrol algoritması ile değerlendirilerek çıkış bilgisi elde edilir22.
Bulanık mantık teorisi bugüne kadar kalite kontrol, ürün planlanması, taşıma, ulaşım, network, oyunlar kuramı, bankacılık, finans, ziraat ve tıp gibi birçok bilim dalında başarı ile uygulanmıştır23.
3. Yapay Sinir Ağları (Artificial Intelligence Networks)
Yapay sinir ağları örneklerle ilgili bilgiler toplamakta, genellemeler yapmakta ve daha sonra hiç görmediği örnekler ile karışılışınca öğrendiği bilgileri kullanarak o örnekler hakkında karar verebilmektedir. Yapay sinir ağları bu öğrenebilme ve genelleme özellikleri nedeniyle günümüzde birçok bilim alanında geniş uygulama olanağı bulmakta ve karmaşık problemleri başarı ile çözebilme yeteneğini ortaya koymaktadır 3.
Sinir ağları insan beynindeki nöronlara benzer olarak bir araya getirilen yapay nöronların değişik bağlantı geometrisi ile birbirlerine bağlanması sonucu oluşan sistemlerdir. Şekil 3a ve 3b'de doğal bir nöronun ve yapay bir sinir ağının şematik yapısı görülmektedir.
Sinir ağları paralel hesaplama tekniğini kullanan bir metottur. Programlama yerine doğrudan mevcut örnekler üzerinden eğitilerek işlem yapılır. Bağımsız değişkenler (giriş) ile bu değişkenlere ilişkin bağımlı değişkenler (çıkış) arasındaki matematiksel ilişki “öğrenebilen” sistemlerdir. Şekil 4'de İleri beslemeli yapay sinir ağları şematik yapısı görülmektedir.
 Büyütmek İçin Tıklayın |
Şekil 4: İleri beslemeli giriş, gizli ve çıkış katmanlarından oluşan sinir ağı mimarisi. |
Bu çalışmalarda kullanılan ileri beslemeli ağ mimarisinde nöronlar katmanlar halinde yerleştirilir. İleri beslemeli sinir ağı en az üç katmandan oluşur. Bu katmanlı yapısından dolayı çok katmanlı algılayıcı (multilayer perceptron) olarak da isimlendirilmektedir. İleri beslemeli sinir ağları geniş bir uygulama alanına sahiptir. Radyolojik bulguların değerlendirilmesinde kendisini kanıtlamış olan ileri beslemeli sinir ağları transcranial Doppler parametrelerinin sınıflandırılmasında da kullanılmıştır 24,25.
Hastalıklarda tanıya varma işlemi yapay zeka ile bir “şekil tanıma” görevi gibi ele alınabilir. Sinir ağları son 20 yıldır şekil tanıma problemleri için bir hesaplama aracı olarak birçok biçim ve öğrenme algoritması ile akademik araştırmalar da, endüstri de ve tıbbi uygulamalarda kullanılmaktadır. Literatürde sinir ağlarının kalp yetmezliği, miyokard enfarktüsü ve anjina pektoris tanısında bir çok klinik uygulamaları ve başarılı sonuçları bildirilmiştir 26-31.
4. Sinirsel Bulanık Sistemler ve NEFCLASS Modelin Yapısı
Sinirsel bulanık sistemler sinir ağları ile bulanık sistemlerin birleşimidir. Bu iki model ilk etapta kendi arasında bağımsız bir alana sahiptir. Ancak ikisinin birleşimi çoğu problemin çözümü için yararlar sağlamaktadır.
Bir sinirsel bulanık sistem olan NEFCLASS veriden bulanık sistem oluşturan dilsel bir yaklaşım metodu olup, yerel parametre değişimleri sezgisel (heuristic) veri sürme algoritması ile hesaplanır. NEFCLASS modelinin ana amacı okunabilir bir sınıflayıcı oluşturmak ve kabul edilebilir bir doğruluğu yakalamaktır32.
NEFCLASS sinirsel bulanık sistem; özel üç katmanlı ileri beslemeli bir sinir ağı gibi ilk katman giriş değişkenlerini, gizli katman bulanık kuralları, üçüncü katman ise çıkış değişkenlerini ifade eder ve her biri için bir ünite vardır. Şekil 5'de NEFCLASS modelin yapısı görülmektedir.
NEFCLASS ve sinir ağlarının literatürdeki örnek uygulamalarında Doppler hız parametrelerinin beyin arterlerindeki darlık derecelerini belirleyebileceği bildirilmektedir. Pratik uygulamalarda ultrasonografik Doppler bulguları tanıda yeterli görülmediği olgular, daha invaziv bir yöntem olan anjiografiye tabii tutulmaktadır. Doppler parametrelerinin yapay zeka teknikleri ile gerçek zamanlı olarak yorumlanması klinik çalışmalarda transcranial Doppler tekniğini daha etkin kılacaktır. Bildirilen bu çalışmalarda transcranial Doppler parametreleri istatistiksel metoda dayalı bir yapay zeka yöntemi olan sinir ağı modeline uygulanarak sınıflandırılmasında başarılı olmuştur33-36.
Sinir ağları insan beynindeki nöronlara benzer olarak birleştirilen yapay nöronların bağlantı geometrisi ile birbirleriyle ilişkilendirilmesi sonucu oluşan sistemlerdir. İleri beslemeli sinir ağları, geniş bir uygulama alanına sahiptir. İleri beslemeli sinir ağı transcranial Doppler ve kardiak Doppler işaretlerinin sınıflandırılmalarında başarılı bulunmuştur. Bu tip ağ yapısı tıp ve biyomedikal dahil birçok alana başarı ile uygulanmaktadır 37-50.
Doppler ultrasonografi bulguları bir çalışmada ileri beslemeli geri yayılımlı sinir ağı mimarisi ile bir başka benzer çalışmada ise diğer bir yapay zeka yöntemi olan genetik algoritma sistemi kullanılarak başarılı bir şekilde sınıflandırılmıştır 48,51.
5. Çok Katmanlı Algılayıcılar ve Öğrenme Algoritmaları
Çok katmanlı algılayıcı modeli bir giriş, bir veya daha fazla ara ve bir de çıkış katmanından oluşur. Bir katmandaki işlem elemanları bir üst katmandaki işlem elemanlarına bağlıdır. Birçok öğretme algoritmasının bu ağı eğitmede kullanılabilir olması bu modelin yaygın kullanılmasının nedenidir.
Çok katmanlı algılayıcı ağlarında örnekler “giriş katmanı”na uygulanır, “ara katmanlar” da işlenir ve “çıkış katmanı”ndan da çıkışlar elde edilir. Kullanılan eğitme algoritmasına göre ağın çıkışı ile arzu edilen çıkış arasındaki “hata” tekrar geriye doğru yayılarak minimuma düşünceye kadar ağırlıkları değiştirilir.
Anlaşılması kolay ve matematiksel olarak ispatlanabilir olmasından dolayı en çok tercih edilen öğretme algoritmasıdır. Bu algoritma hataları geriye doğru çıkıştan girişe azaltmaya çalışmasından dolayı geri yayılım ismini almıştır. Tipik çok katlı geri yayılım ağı, daima; bir giriş tabakası, bir çıkış tabakası ve en az bir gizli tabakaya sahiptir. Sinir ağı yapısının bulguları daha başarılı bir şekilde sınıflandırılabilmesi için “Genetik Algoritma ve Sinir Ağı” yöntemi geliştirilmiş ve tıp dahil bir çok alanda başarılı bir şekilde uygulanmıştır52.
5. Genetik algoritma (Genetic Algorithm)
Genetik algoritma konusunda ilk çalışmalarda canlılarda yaşanan genetik sürecin bilgisayar ortamında gerçekleştirilmesi düşünülüştür 53,54.
Genetik algoritma parametre kümelerini kodlayarak çalışır. Genetik algoritma amaç fonksiyonu bilgisini kullanır. Genetik algoritma, doğal genetik ve doğal seçim mekaniğine dayanan olasılıksal bir arama metodudur. Doğada iyi olanın hayatta kalması prensibine dayanır. Sezgisel bir metot olan genetik algoritma, geleneksel çözüm teknikleri ile çözülemeyen veya çözümü zor olan problemlere başarı ile uygulanmıştır 55-57.
60 hastanın mitral kapakçığından kaydedilen kardiyak Doppler sinyalleri bir 16 bitlik ses kartı ile bir bilgisayara aktarılan bir çalışmada; her bir hastadan kaydedilen sinyallere güç spektrum yoğunluğu analizi uygulanmış, daha iyi ve hızlı teşhis yapabilmek için, güç spektrum yoğunluğu değerleri çok katmanlı algılayıcı sinir ağı ve neuro-fuzzy sistem ile sınıflandırılmıştır. Çok katmanlı algılayıcı sinir ağı ile yapılan sınıflamalarda %93.33 başarı oranı, neuro-fuzzy sistem ile yapılan sınıflamalarda ise %90 başarı oranı elde edilmiştir. Sınıflama sonuçlarında Çok katmanlı algılayıcı sinir ağının teşhiste daha iyi sonuçlar verdiği görülmüştür. Neuro-fuzzy system bize sınıflama başarısından ziyade sistemin anlaşılabilirliğini arttırmıştır. Yapay sinir ağlarının sınıflamasının yorumlanması zordur. Neuro-fuzzy sistemde ise fuzzy sets'ler ve kurallar sayesinde yorumlanabilirlik ön plana çıkmaktadır 45.
Radyolojik Uygulamalara Örnekler
Diabetli 179 hastanın carotid arterlerinin Doppler parametrelerini sınıflamak için yapılan çalışmada; geleneksel istatistiksel bir metod olan lojistik regresyon ve çok katmanlı perseptron (MLP) sinir ağı olmak üzere iki farklı matematiksel model kullanılmış, Karotid arter Doppler sonogramlarından elde edilen parametreler üzerine bir istatistiksel model olan lojistik regresyon ve yapay sinir ağı modelleri ayrı ayrı kurularak sınıflama performansları incelenmiş, sonuçta; karotid arterden alınan Doppler sonogramlarının sinir ağları tarafından başarı ile sınıflandırılabileceği gösterilmiştir 48.
Diabetli hastalara ait karaotid ve oftalmik arterlerin kan akış hemodinamiği neuro-fuzzy sisteminde sınıflandırılarak incelenen iki çalışılmada; karotid arter Doppler sonogramlarından elde edilen veriler, neuro-fuzzy sistemine uygulanarak sınıflama performansları incelenmiş, yapılan öğrenme ve test
işlemleri sonucunda karotid arterden alınan verilerde %85 oranında başarı elde edilmiş ve bu sonuçlarla karotid arterden alınan Doppler sonogramlarının başarı ile sınıflandırılabileceğini gösterilmiştir. Sağ ve sol oftalmik arterdeki kan akış hemodinamiği neuro-fuzzy sisteminde sınıflandırılarak diabetin oftalmik arterdeki etkisine bakılarak sağ ve sol oftalmik arter Doppler sonogramlarından elde edilen veriler neuro-fuzzy sistemine ayrı ayrı uygulanarak sınıflama performansları incelenmiştir. Yapılan öğrenme ve test işlemleri sonucunda sağ oftalmik arterden alınan verilerde %85, sol oftalmik arterdeki verilerde ise %87,5 oranında başarı elde edilmiştir. Bu sonuçlar ile gerek sol oftalmik arterden alınan gerekse sağ oftalmik arterden alınan Doppler sonogramlarının başarı ile sınıflandırılabileceğini göstermiştir 58,59.
NEFCLASS ve CANFIS'in sınıflama performansları karşılaştırıldığı bir çalışmada, 30 sağlıklı, 52 obeziteli kişilere ait farklı arterler ve vücut kitle indexi uzman systemler ortamında sınıflandırılarak obezitenin etki ettiği bölgeler incelenmiş ve karşılaştırma sonucunda NEFCLASS'ın sınıflama performansının CANFIS'in sınıflama performansından daha üstün olduğu gözlenerek bu durumun nedenleri incelenmiştir. Aynı zamanda bu sınıflamalar obezitenin çeşitli arterler üzerindeki etkilerinden ziyade, vücut kitle endeksini daha çok etkilediği görülmüştür. Bu sonuçlar obezite, arterler üzerindeki etkisinden ziyade, vücut kitle endexine daha çok etki ettiğini göstermiştir 60.
110 kişinin temporal bölgesine ait orta beyin arterinden kaydedilen transcranial Doppler işaretlerinin 16 bitlik bir ses kartı yardımıyla bir kişisel bilgisayara aktarılan bir çalımada; her bir kişiden kaydedilen Transcranial Doppler fark frekansı, Fast Fourier Transform (FFT) spektral analizine uygulanmış, FFT'ye ait kan akış hız değerleri istatiksel hale getirilerek YSA da hastalara ait kafa basınç tayinleri daha doğru tayin etmek amacıyla sınıflama yapılmıştır. Bu sınıflama esnasında YSA da biyomedikal dataları eğitim için BPNN (Back Propagation Neural Network) ve SOM (Self Organization Map) algoritmaları, öğrenme teknikleri olarak da momentum ve delta bar delta kullanılarak, sınıflama ve öğrenme açısından karşılaştırmalarında başarılı sonuçlar elde edilmiştir 61.
Benzer bir çalışmada ise; 30 hastanın karotid arterlerinden kaydedilen Doppler sinyalleri 16 bitlik bir ses kartı kullanılarak bir kişisel bilgisayara aktarılmıştır. Her bir hastadan kaydedilen Doppler fark sinyallerine ait sonogramlar hızlı Fourier Dönüşümü (FFT) ve least squares autoregressive (AR) metodları ile elde edilmiştir. Bu sonogramlar kullanılarak tıbbi değerlendirme açısından metodlar karşılaştırılmıştır 62.
Yapay zeka yöntemlerinin klinik uygulamalarda ortaya koyduğu başarılı sonuçlar, radyolojik görüntülerinin yorumlamalarına katkı sağlayacak ve radyologlara bu konuda da yardımcı olacaktır.
Sonuç olarak yapay zeka yöntemleri ile yapılan bu çalışmalarla, tanıya varmada gerçek zamanlı olarak uygulanabilir olmasının yanında radyolojik incelemelerde elde edilen bulgulara ait parametrelerin hızlı ve kesin bir şekilde değerlendirilebileceği görülmektedir.